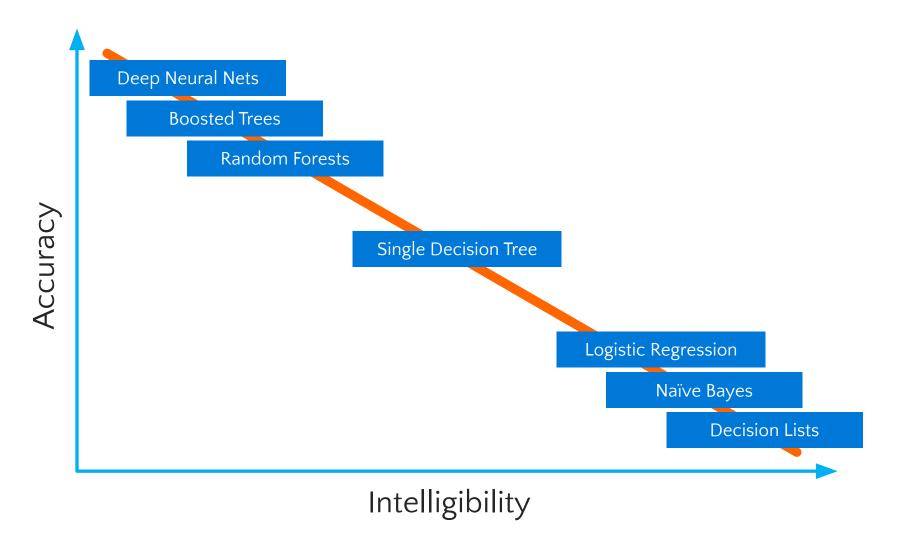
NAMs: Neural Additive Models Interpretable Machine Learning With Neural Nets

Rishabh Agarwal, Levi Melnick, Ben Lengerich, Nicholas Frosst, Xuezhou Zhang, Rich Caruana, Geoffrey Hinton

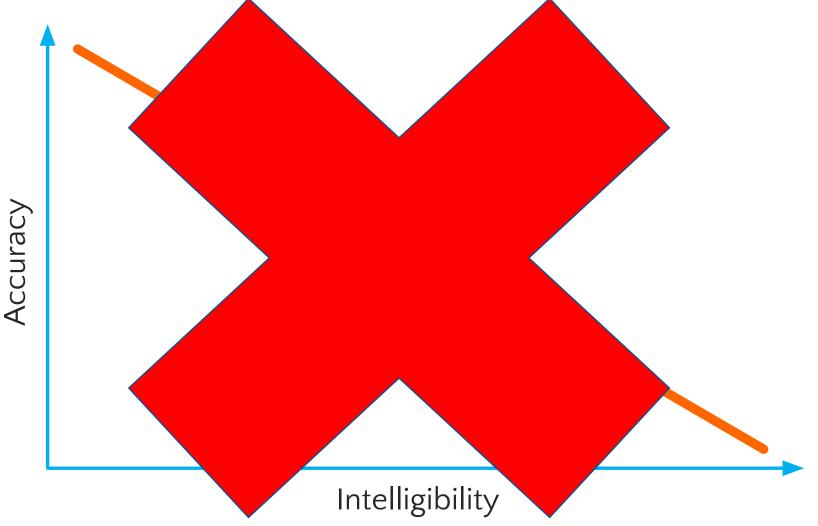
Introduction to GAMs

Generalized Additive Models

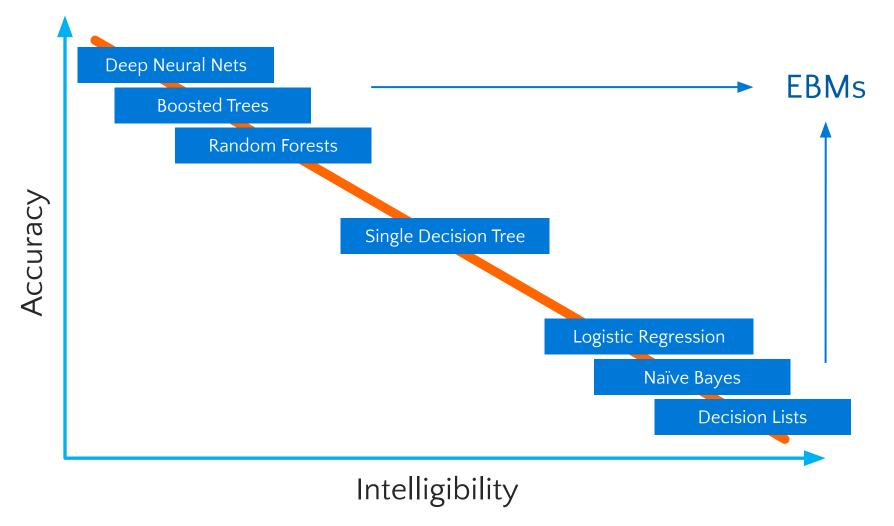
Accuracy vs. Intelligibility Tradeoff ???



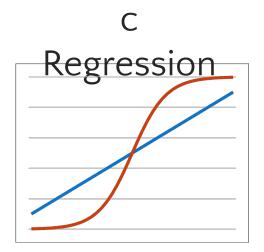
Accuracy vs. Intelligibility Tradeoff –– Not True for Tabular Data



Accuracy vs. Intelligibility Tradeoff -- Not True for Tabular Data

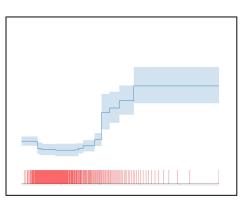


EBMs: Generalized Additive Models (GAMs)



Linear/Logisti

GAMs/EBMs



- Interpretable
- Not very accurate
- Can't model nonlinearities
- Can't model normal in middle
- Sometimes gets sign wrong

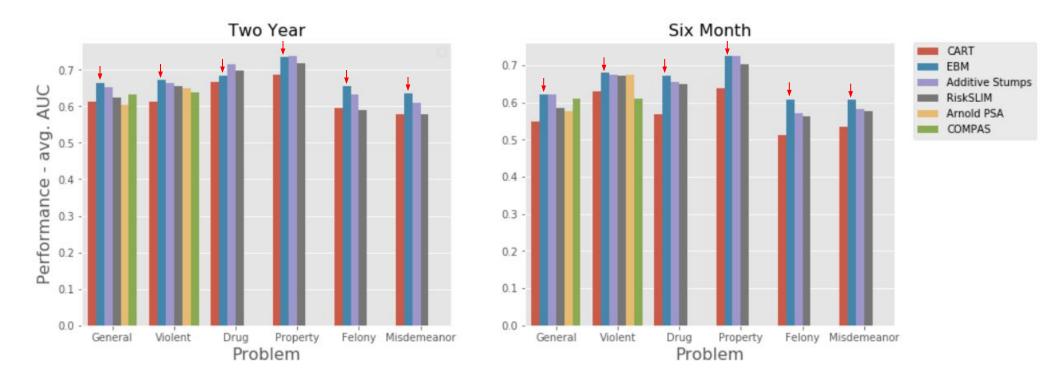
- More interpretable than linear/logistic
- Can be very accurate
- Can model nonlinearities
- Can model normal in middle
- More likely to show important effects

- Not interpretable (blackbox)
- Can be very accurate
- Can model nonlinearities
- Can model normal in middle
- Likely to learn spurious effects

Table 1: Test set AUCs across 10 datasets. Best number in each row in bold.

		GAM					Full Complexity				
	EBM	EBM-BF	XGB	XGB-L2	FLAM	Spline	iLR	LR	mLR	RF	XGB-d3
Adult	0.930	0.928	0.928	0.917	0.925	0.920	0.927	0.909	0.925	0.912	0.930
Breast	0.997	0.995	0.997	0.997	0.998	0.989	0.981	0.997	0.985	0.993	0.993
Churn	0.844	0.840	0.843	0.843	0.842	0.844	0.834	0.843	0.827	0.821	0.843
Compas	0.743	0.745	0.745	0.743	0.742	0.743	0.735	0.727	0.722	0.674	0.745
Credit	0.980	0.973	0.980	0.981	0.969	0.982	0.956	0.964	0.940	0.962	0.973
Heart	0.855	0.838	0.853	0.858	0.856	0.867	0.859	0.869	0.744	0.854	0.843
MIMIC-II	0.834	0.833	0.835	0.834	0.834	0.828	0.811	0.793	0.816	0.860	0.847
MIMIC-III	0.812	0.807	0.815	0.815	0.812	0.814	0.774	0.785	0.776	0.807	0.820
Pneumonia	0.853	0.847	0.850	0.850	0.853	0.852	0.843	0.837	0.845	0.845	0.848
Support2	0.813	0.812	0.814	0.812	0.812	0.812	0.800	0.803	0.772	0.824	0.820
Average	0.866	0.862	0.866	0.865	0.864	0.865	0.852	0.853	0.835	0.855	0.866
Rank	3.70	6.70	3.40	4.90	5.05	4.60	8.70	7.75	9.70	7.40	4.10
Score	0.893	0.781	0.873	0.818	0.836	0.810	0.474	0.507	0.285	0.543	0.865

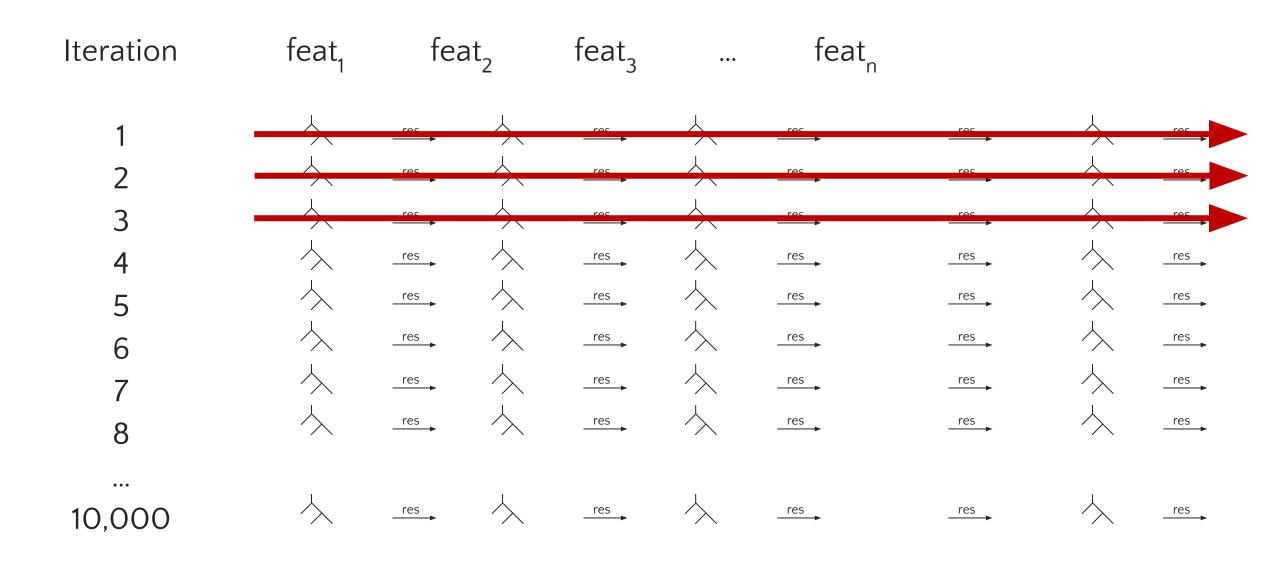
Chang, C.H., Tan, S., Lengerich, B., Goldenberg, A. and Caruana, R. "How Interpretable and Trustworthy are GAMs?" *KDD2021*

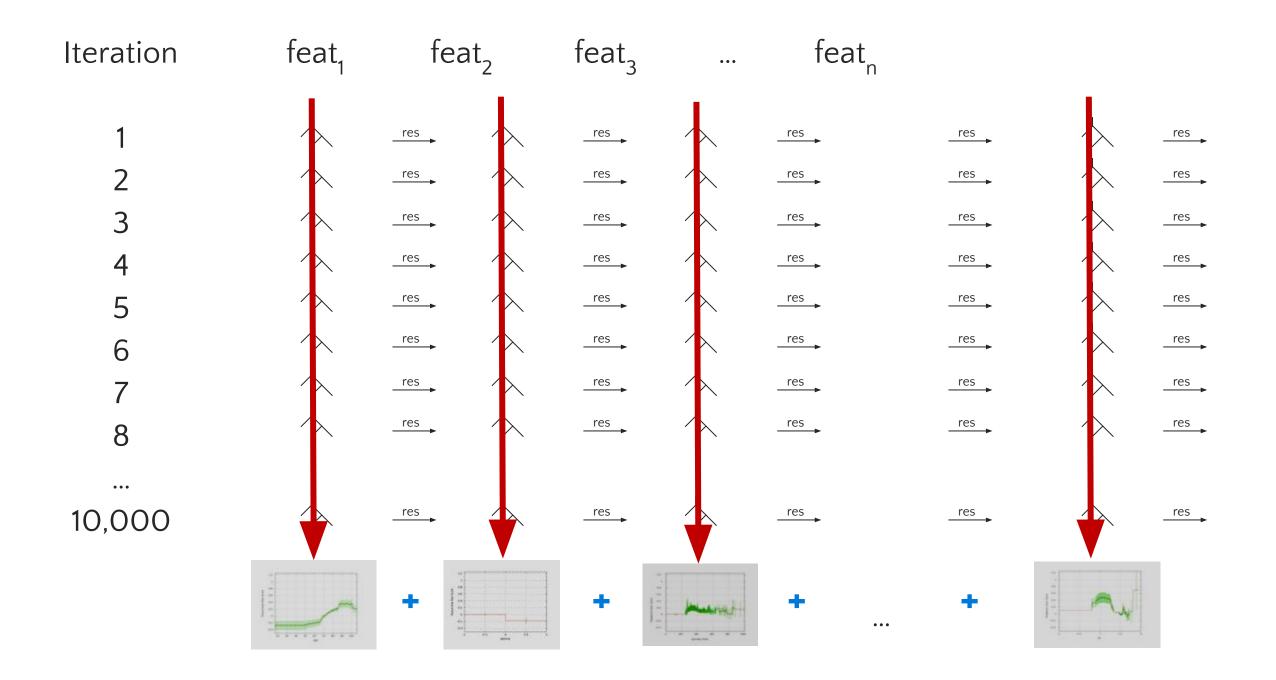


"We observed that the best interpretable models can perform approximately as well as the best black-box models(XGBoost)"

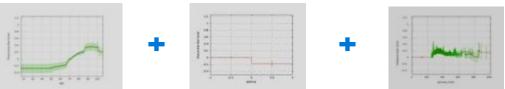
Wang, C., Han, B., Patel, B., Mohideen, F. and Rudin, C., 2020. In Pursuit of Interpretable, Fair and Accurate Machine Learning for Criminal Recidivism Prediction. *arXiv preprint arXiv:2005.04176*.

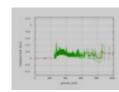
How Are EBMs Trained?



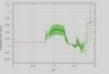


feat₁ feat₂ feat₃ ... feat_n





+

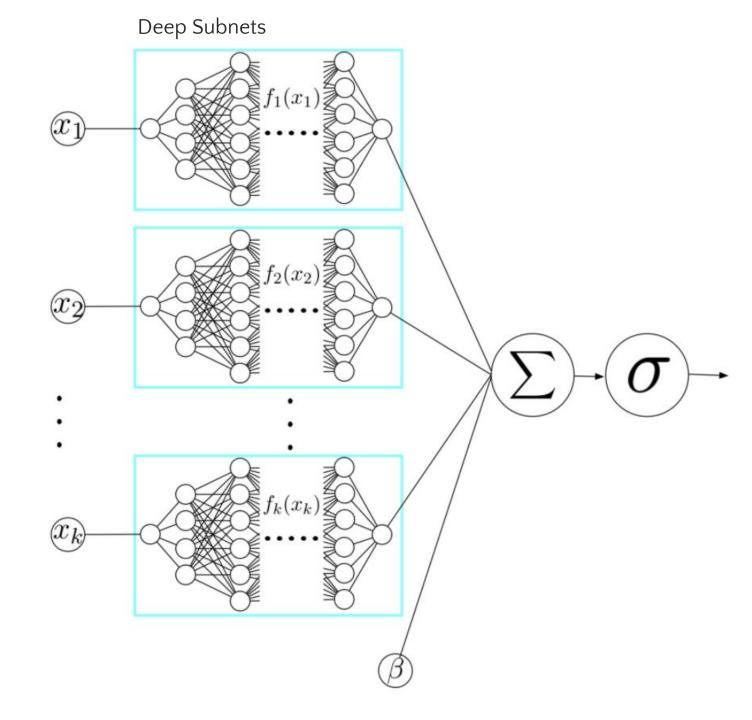


Limitations of EBMs

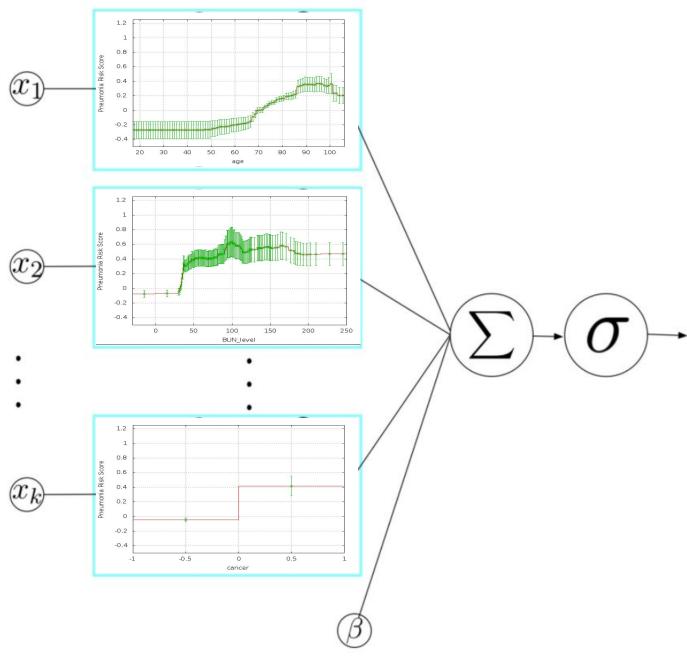
- · EBMs have been state-of-the-art in glass-box learning for 5-10 years
- \cdot But...
- \cdot More than half of the ML community uses neural nets, not boosted trees
- · Algorithms based on boosted trees don't scale as well as DNNs/CNNs trained on GPUs
- · GAMs trained with boosted trees are not differentiable, which reduces flexibility
- \cdot Models trained with neural nets are much more modular and flexible
- · Hard to make some things like multitask learning work with boosted trees

NAMs: Neural Additive Models

How Do We Fit GAMs with Neural Nets?



- Each feature feeds into a separate DNN subnet
- \cdot Subnets added at output layer
- Subnets learn separate additive models for each feature
- Sigmoid at output used for classification, not regression
- \cdot Subnets are learned in parallel
- Can be trained at massive scale on GPUs with standard software
- After training, subnets are replaced with graphs like EBMs



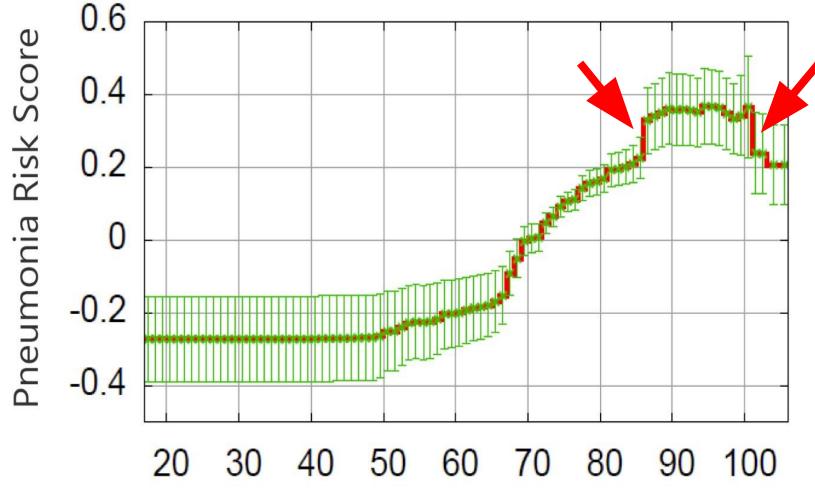
- Each feature feeds into a separate DNN subnet
- \cdot Subnets added at output layer
- Subnets learn separate additive models for each feature
- Sigmoid at output used for classification, not regression
- \cdot Subnets are learned in parallel
- Can be trained at massive scale on GPUs with standard software

 After training, subnets are replaced with feature graphs

But there's a problem...

Work with EBMs Show Jumps in Graphs Are Important

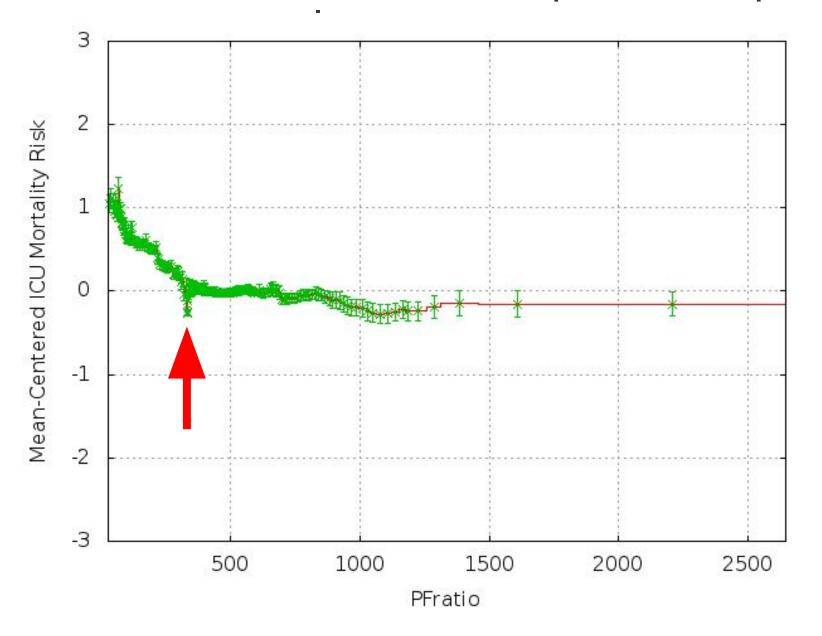
Work with EBMs Show Jumps in Graphs Are Important



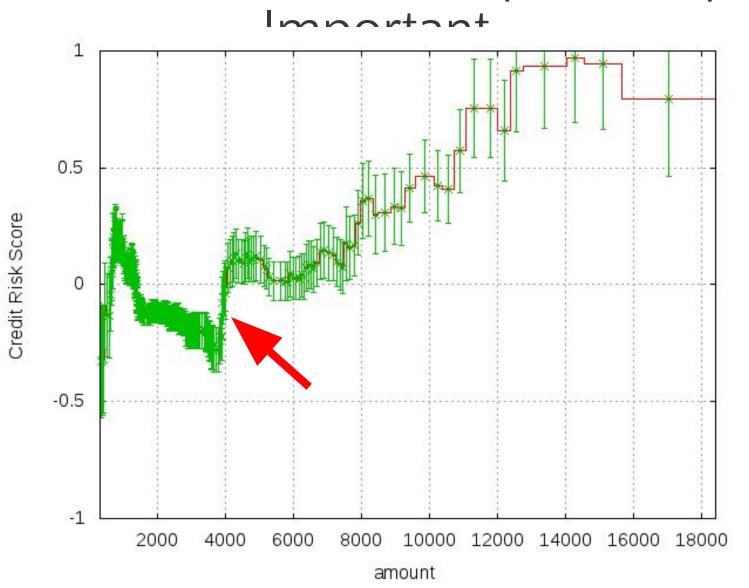
Work with EBMs Show Jumps in Graphs Are Important З 2 Mean-Centered ICU Mortality Risk 1 0 -1 -2 -3 50 100 200 250 150 0

SBP

Work with EBMs Show Jumps in Graphs Are

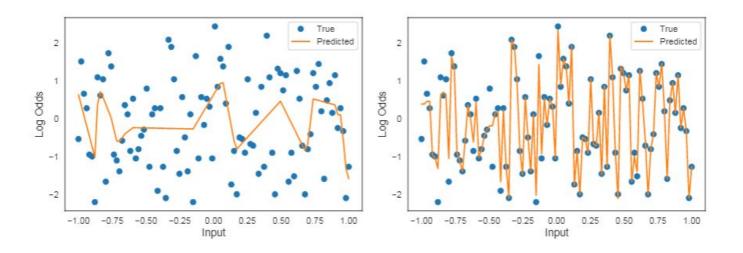


Work with EBMs Show Jumps in Graphs Are



DNNs Tend to Be Too Smooth to Learn Jumps Well

- · How do we make DNNs "jumpier" without driving the entire model into overfitting?
- · Trick is a special activation function: **ExU:** $h(x) = f(e^w * (x b))$
 - · slope of activation function can be very steep so small changes in input => large changes in output



- \cdot Although overfitting is less of an issue in additive models like NAMs
 - To further reduce overfitting, we apply dropout, weight decay, capped ReLU activations, and also bag the NAM model 25–100 times to form an ensemble

Empirical Results

Accuracy of NAMs

Model	COMPAS	MIMIC-II	Credit Fraud
Logistic Regression Decision Trees	$\begin{array}{c} 0.730 {\pm} \ 0.014 \\ 0.723 {\pm} \ 0.010 \end{array}$	$\begin{array}{c} 0.791 \pm 0.007 \\ 0.768 \pm 0.008 \end{array}$	$\begin{array}{c} 0.975 \pm 0.010 \\ 0.956 \pm 0.004 \end{array}$
NAMs EBMs	$\begin{array}{c} 0.741 \pm 0.009 \\ 0.740 \pm 0.012 \end{array}$	$\begin{array}{c} 0.830 \pm 0.008 \\ 0.835 \pm 0.007 \end{array}$	$\begin{array}{c} 0.980 \pm 0.002 \\ 0.976 \pm 0.009 \end{array}$
XGBoost DNNs	$\begin{array}{c} 0.742 \pm 0.009 \\ 0.735 \pm 0.006 \end{array}$	$\begin{array}{c} 0.844 \pm 0.006 \\ 0.832 \pm 0.009 \end{array}$	$\begin{array}{c} 0.981 \pm 0.008 \\ 0.978 \pm 0.003 \end{array}$

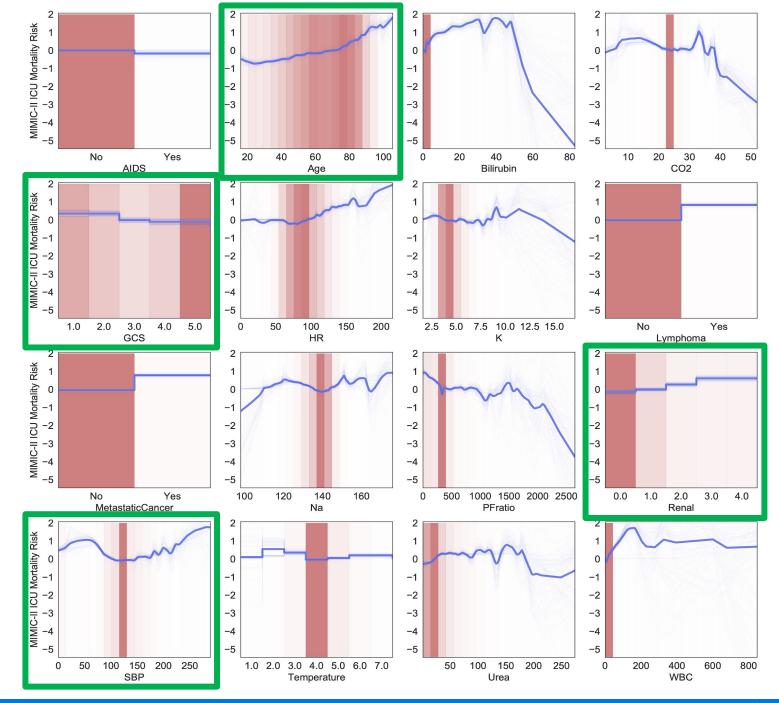
AUC on classification datasets. Higher is better.

Model	California Housing	FICO Score
Linear Regression Decision Trees	$\begin{array}{c} 0.728 \pm 0.015 \\ 0.720 \pm 0.006 \end{array}$	$\begin{array}{c} 4.344 \pm 0.056 \\ 4.900 \pm 0.113 \end{array}$
NAMs EBMs	$\begin{array}{c} 0.562 \pm 0.007 \\ 0.557 \pm 0.009 \end{array}$	$\begin{array}{c} 3.490 \pm 0.081 \\ 3.512 \pm 0.095 \end{array}$
XGBoost DNNs	$\begin{array}{c} 0.532 \pm 0.014 \\ 0.492 \pm 0.009 \end{array}$	$\begin{array}{c} 3.345 \pm 0.071 \\ 3.324 \pm 0.092 \end{array}$

RMSE on regression datasets. Lower is better.

A little loss in accuracy for NAMs compared to DNNs on tabular data!

MIMIC-II ICU Mortality Prediction

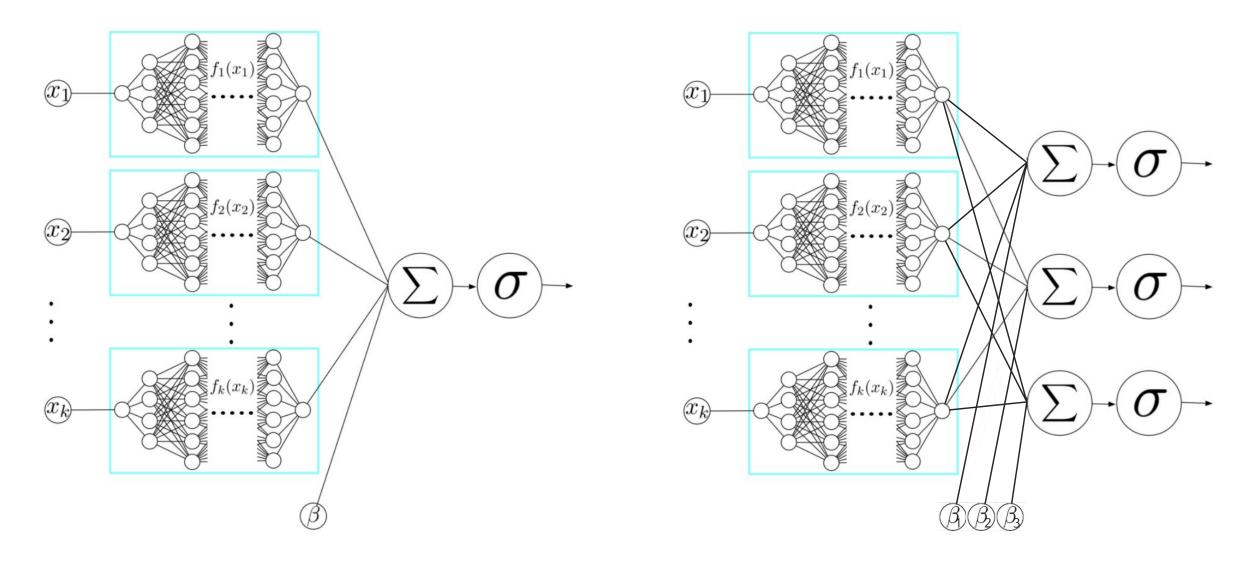


Microsoft Research

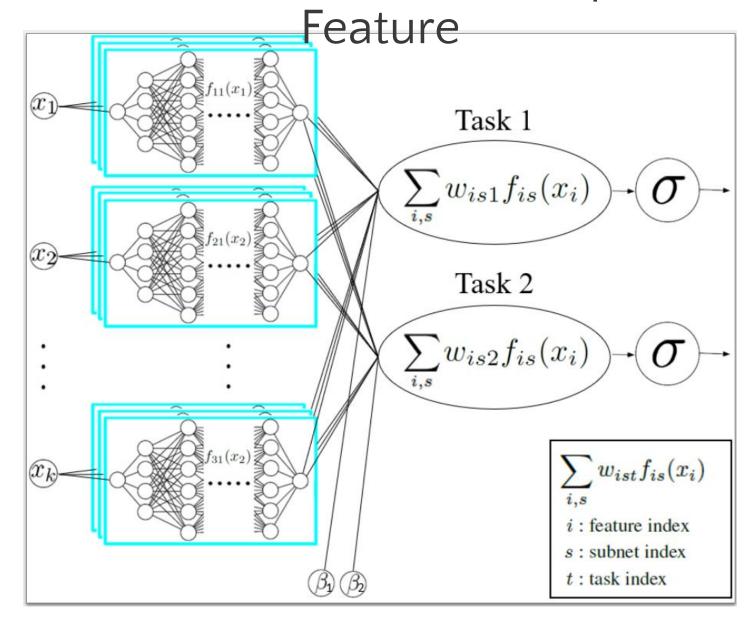
Multitask Learning with NAMs

Single Task NAM

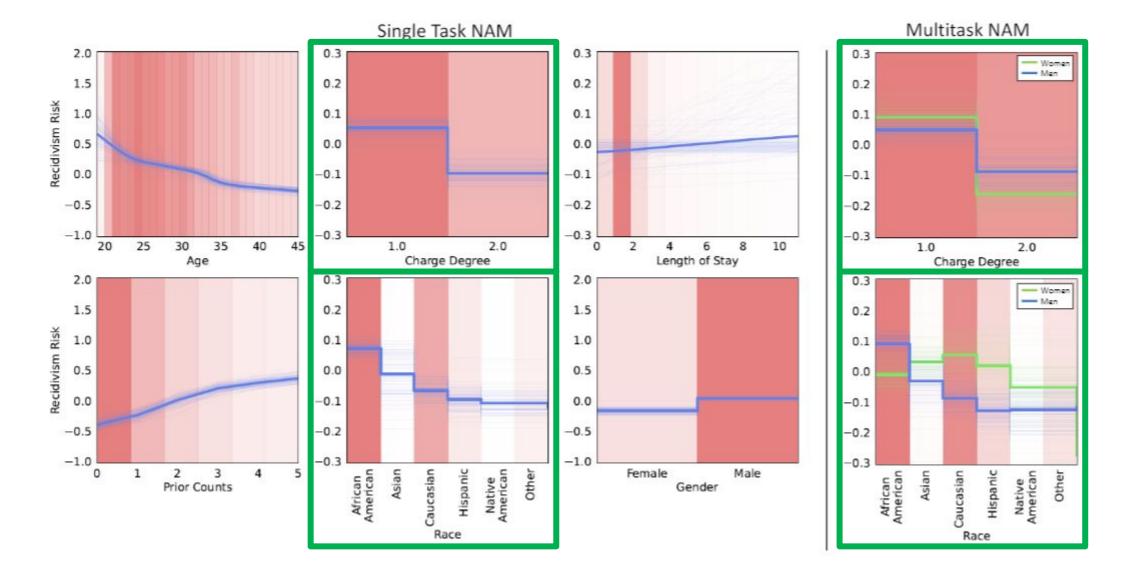
MultiTask NAM



More Flexible MultiTask NAM: Multiple SubNets per

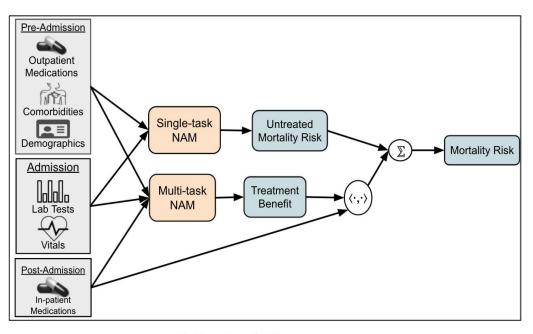


Model	COMPAS Women	COMPAS Men	COMPAS Combined
Single Task NAM Multitask NAM	$\begin{array}{c} 0.716 \pm 0.026 \\ 0.723 \pm 0.019 \end{array}$	$\begin{array}{c} 0.735 \pm 0.009 \\ 0.737 \pm 0.009 \end{array}$	$\begin{array}{c} 0.737 \pm 0.010 \\ 0.739 \pm 0.010 \end{array}$



Benefitting from Differentiability & MultiTask Learning

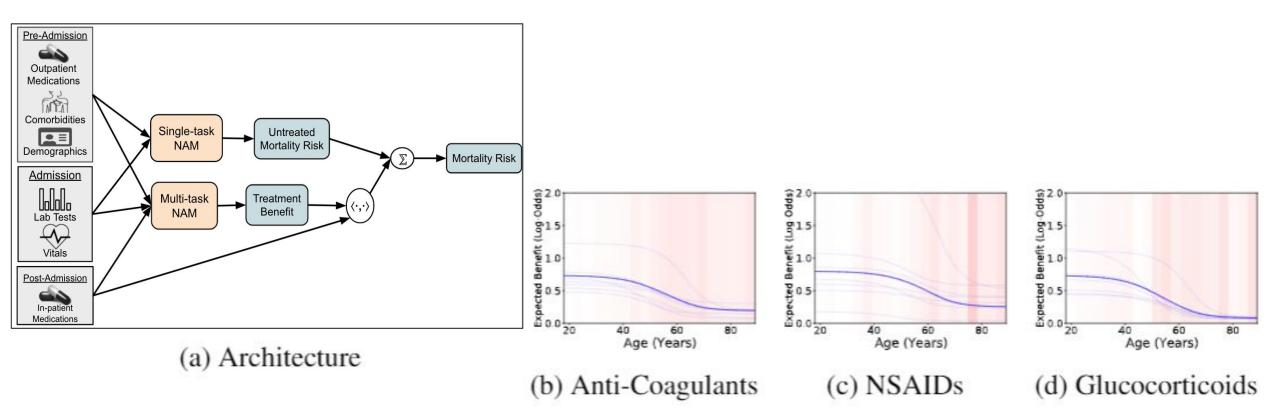
Estimating Personalized Treatment Benefits for COVID-19



(a) Architecture

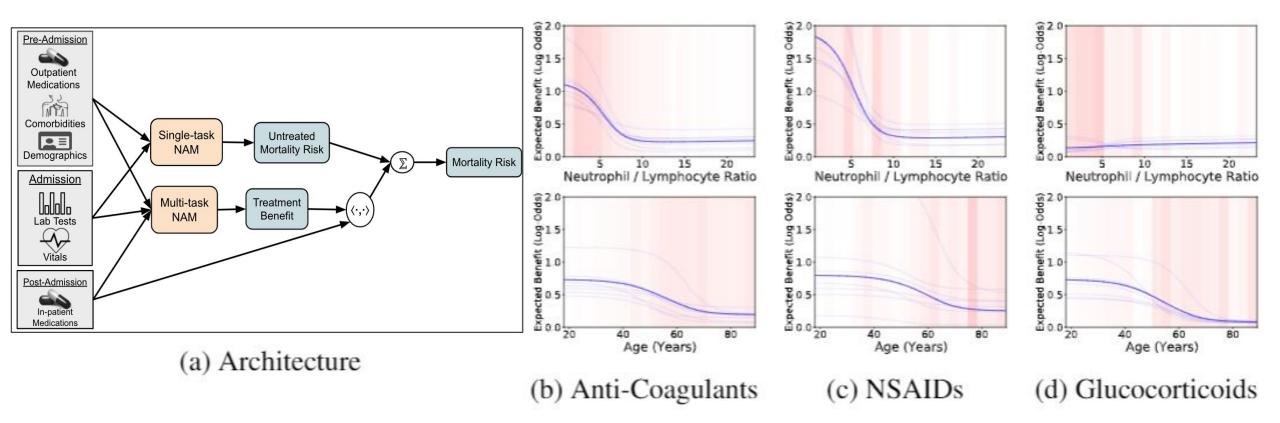
Lengerich et al. Automated Interpretable Discovery of Variable Treatment Effectiveness: A Covid-19 Case Study. 2021.

Estimating Personalized Treatment Benefits for COVID-19



Lengerich et al. Automated Interpretable Discovery of Variable Treatment Effectiveness: A Covid-19 Case Study. 2021.

Estimating Personalized Treatment Benefits for COVID-19



Lengerich et al. Automated Interpretable Discovery of Variable Treatment Effectiveness: A Covid-19 Case Study. 2021.

Summary

- · Glassbox learning can be as accurate as Blackbox learning on Tabular Data
 - · Accurate
 - · Interpretable
 - · Editable
- · NAMs allow us to train state-of-the-art GAMs with Deep Neural Nets
 - · Fully interpretable and editable
 - · Differentiable
 - · More flexible & modular: multitask learning, more complex architectures like personalized medicine
 - $\cdot\,$ Can scale because they can be trained GPUs
- \cdot Building easy-to-use toolkits so everyone can train GAMs
- \cdot Many opportunities going forward to combine NAMs with DNNs, CNNs, RI, ...