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Introduction to GAMs
Generalized Additive Models
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Accuracy vs. Intelligibility Tradeoff -- Not True for Tabular
Data
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EBMs: Generalized Additive Models (GAMs)

Linear/Logisti CAMSs/EBMSs BIackI}ox
C Machine
Regression '
[
* Interpretable * More interpretable than * Not interpretable (blackbox)
* Not very accurate linear/logistic « Can be very accurate
* Can't model nonlinearities » Can be very accurate * Can model nonlinearities
* Can't model normal in * Can model nonlinearities * Can model normal in middle
middle * Can model normal in middle * Likely to learn spurious effects

* Sometimes gets sign wrong * More likely to show important

Rich Caruana Microsoft Research




Table 1: Test set AUCs across 10 datasets. Best number in each row in bold.

GAM Full ComElexitx
EBM |[EBM-BF XGB XGB-L2 FLAM Spline iLR LR mLR RF [XGB-d3

Adult J0.930| 0.928 0.928 0917 0.925 0.920 0.927 0.909 0.925 0.912 | 0.930
Breast ]0.997] 0995 0997 0.997 0.998 0.989 0.981 0.997 0.985 0.993 | 0.993
Churn ]0.844] 0.840 0.843 0.843 0.842 0.844 0.834 0.843 0.827 0.821 | 0.843
Compas | 0.743]| 0.745 0.745 0.743 0.742 0.743 0.735 0.727 0.722 0.674 | 0.745
Credit | 0.980] 0.973 0980 0.981 0.969 0.982 0.956 0.964 0.940 0.962 | 0.973
Heart J0.855] 0.838 0.853 0.858 0.856 0.867 0.859 0.869 (.744 0.854 | 0.843
MIMIC-11] 0.834] 0.833 0.835 0.834 0.8314 0.828 0.811 0.793 0.816 0.860) 0.847
MIMIC-IIT} 0.812 ] 0.807 0.815 0.815 0.812 0.814 0.774 0.785 0.776 0.807 | 0.820
Pneumonial 0.853] 0.847 0.850 0.850 0.853 0.852 0.843 0.837 0.845 0.845 | 0.8348
Support2 | 0.813] 0.812 0.814 0.812 0.812 0.812 0.800 0.803 0.772 0.824| 0.820

Average |0.866| 0.862 0.866 0.865 0.861 0.865 0.852 0.853 (.835 0.855 | 0.866
Rank 370 | 670 3.40 490 5.05 460 870 7.75 970 7.40 | 4.10
Score ]0.893| 0.781 0.873 0.818 0.836 0.810 0.474 0.507 0.285 0.543 | 0.865

Chang, C.H., Tan, S., Lengerich, B., Goldenberg, A. and Caruana, R.
"How Interpretable and Trustworthy are GAMs?” KDD2021



Performance - avg. AUC
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“We observed that the best interpretable models can perform
approximately as well as the best black-box models(XGBoost)”

Wang, C, Han, B., Patel, B., Mohideen, F. and Rudin, C., 2020.
In Pursuit of Interpretable, Fair and Accurate Machine Learning for
Criminal Recidivism Prediction. arXiv preprint arXiv:2005.04176.



How Are EBMs Trained?
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Limitations of EBMs

- EBMs have been state-of-the-art in glass-box learning for 5-10 years
- But...

- More than half of the ML community uses neural nets, not boosted trees

- Algorithms based on boosted trees don't scale as well as DNNs/CNNs trained on
GPUs

- GAM s trained with boosted trees are not differentiable, which reduces flexibility
- Models trained with neural nets are much more modular and flexible

- Hard to make some things like multitask learning work with boosted trees



NAMs: Neural Additive Models



How Do We Fit GAMs with Neural
Nets?



Deep Subnets

- Each feature feeds into a

separate DNN subnet

- Subnets added at output layer

- Subnets learn separate

additive models for each
feature

- Sigmoid at output used for

classification, not regression

- Subnets are learned in parallel

- Can be trained at massive

scale on GPUs with standard
software

- After training, subnets are

replaced with graphs like EBMs



Deep Subnets [1 Feature Graphs

- Each feature feeds into a

separate DNN subnet

- Subnets added at output layer

- Subnets learn separate

additive models for each
feature

- Sigmoid at output used for

classification, not regression

- Subnets are learned in parallel

- Can be trained at massive

scale on GPUs with standard
software

- After training, subnets are

replaced with feature graphs



But there's a problem...



Work with EBMs Show Jumps in Graphs Are
Important



Work with EBMs Show Jumps in Graphs Are
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Work with EBMs Show Jumps in Graphs Are
Impbortant
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Work with EBMs Show Jumps in Graphs Are
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Work with EBMs Show Jumps in Graphs Are
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DNNs Tend to Be Too Smooth to Learn Jumps
Well

- How do we make DNNs “jumpier” without driving the entire model into overfitting?

- Trick is a special activation function: ExU: h(:v) = f (ew X (33 — b))

- slope of activation function can be very steep so small changes in input => large changes in output
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- Although overfitting is less of an issue in additive models like NAMs

- To further reduce overfitting, we apply dropout, weight decay, capped RelLU activations, and also
bag the NAM model 25-100 times to form an ensemble



Empirical Results



Accuracy of NAMs

Model

Logistic Regression
Decision Trees

XGBoost
DNNs

COMPAS
0.730+ 0.014

0.723 + 0.010

0.741 + 0.009
0.740 £+ 0.012

0.742 4+ 0.009
0.735 + 0.006

MIMIC-II

0.791 + 0.007
0.768 + 0.008

0.830 + 0.008
0.835 + 0.007

0.844 + 0.006
0.832 + 0.009

Credit Fraud
0.975 + 0.010
0.956 + 0.004

0.980 + 0.002
0.976 + 0.009

0.981 + 0.008
0.978 + 0.003

AUC on classification datasets.
Higher is better.

A little loss in accuracy for NAMs

Model California Housing | FICO Score
Linear Regression 0.728 £ 0.015 4.344 £+ 0.056
Decision Trees 0.720 = 0.006 4.900 £ 0.113

NAMs
EBMs

XGBoost
DNNs

0.562 £ 0.007
0.557 = 0.009

0.532 = 0.014
0.492 = 0.009

3.490 + 0.081
3.512 £+ 0.095

3.345 £ 0.071
3.324 +0.092

RMSE on regression datasets.

Lower is better.

compared to DNNs on tabular data!

Rich Caruana Microsoft Research
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Multitask Learning with NAMSs



Single Task NAM MultiTask NAM
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1 : feature index

s : subnet index

t : task index




I Model

Single Task NAM
Multitask NAM

COMPAS Women | COMPAS Men | COMPAS Combined

0.716 £+ 0.026 0.735 4+ 0.009 0.737 £ 0.010
0.723 £ 0.019 0.737 £ 0.009 0.739 £ 0.010

Recidivism Risk

Recidivism Risk

20
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2 3
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4

Single Task NAM

African
American
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g

Multitask NAM

Length of Stay

Female Male
Gender
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Native
American




Benefitting from Ditferentiability &
MultiTask Learning



Estimating Personalized Treatment Benefits for
COVID-19
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(a) Architecture

Lengerich et al. Automated Interpretable Discovery of Variable Treatment Effectiveness: A Covid-19 Case Study. 2021.
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Lengerich et al. Automated Interpretable Discovery of Variable Treatment Effectiveness: A Covid-19 Case Study. 2021.
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Lengerich et al. Automated Interpretable Discovery of Variable Treatment Effectiveness: A Covid-19 Case Study. 2021.



Summary

- Glassbox learning can be as accurate as Blackbox learning on Tabular Data
- Accurate

- Interpretable
- Editable

- NAMs allow us to train state-of-the-art CGAMs with Deep Neural Nets
- Fully interpretable and editable
- Differentiable
- More flexible & modular: multitask learning, more complex architectures like personalized medicine

- Can scale because they can be trained GPUs
- Building easy-to-use toolkits so everyone can train GAMs

- Many opportunities going forward to combine NAMs with DNNs, CNNs, RI, ...



